
A,-A097 601 SRI INTERNATIONAL MENLO PARK CA F/4 Il/i
RESEARCH ON PARALLELISM IN PRODLEN-SOLVING SYSTEMS. (U)
SEP 60 0 E WILKINS FlrgtUo--c-o188

UNCLASSIFIED AFOSR-TR-0- 150nnniiiliiiii
-Rn--



AF"SR-TR. - 0 1 LE 5 0LEVEL;*
RESEARCH ON PARALLELISM IN PROBLEM-SOLVING SYSTEMS

September 31,. 1980

INqj O i 1st Annual Technical Report

~ I SRI Project 8871

By: David E. Wilkins
Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:

Air Force Office of Scientific Research
Building 410
Bolling Air Force Base
Washington, D. C.

Attention: Captain William Price
Contract No. F49620-79-C-0188k :

o ~74

S R, i K, , Av, .Menh) P,rk, Ctilifornia 9402)hi diaonel ',) 326 6.11go C.itw Ji f INf MII K - TWX 910 373 1,1b
dtri buti on unl imied.n



I. INTRODUCTION

This report summarizes the first year of research on a system for automatically

generating hierarchical plans containing parallel (concurrent) actions. This is

a general planning and problem-solving system that is not tied to a particular

domain. Results of this research might eventually be used in the development of

systems for automatically generating plans to coordinate the activities of

military personnel engaged in a common mission. Other domains of application

could include logistical planning, planning to use many computers on a network

concurrently, and planning to prepare and disseminate a report or other

information to a large group of people.

General-purpose problem-solving systems elicited wide interest in the early and

mid-1970s, and Sacerdoti's NOAH was one of the most important general planners

produced. It remains a landmark because there was little activity in this area

during the la e 1970s. The past year of research on this project has resulted

in the followi g accomplishments:

1. Anal is of the shortcomings of NOAH with ideas for improving it.

2.,,Dersign of a general planning system that advances the state of the
. art while eliminating these shortcomings.

3. Implementation started of the designed system in a computer program.

Some of the results of the new design appeared in a technical publication which

is reproduced in the Appendix. The project is now in its second year, during

which time all parts of the system will be designed in detail and the

implementation will be made more complete. This report summarizes research

performed during the past year.

".I



11. ANALYSIS OF PROBLEM

Our work began by studying the NOAH system and attempting to icprove upon it.

Three specific improvements were made. A procedure was written for printing

procedural nets graphically to aid analysis. Upon finding a conflict in two

parallel branches of a plan NOAH could solve the problem only by doing one

branch before the other. SIGNAL and WAIT nodes were added this year to allow

synchronization at various points along the parallel branches. A new critic was

also added to NOAH. Goals in NOAH's plans that at first appear to have been

already achieved, may no longer appear so after certain actions are taken. The

new critic checks for such goals.

During this study of NOAH, we outlined a number of major weaknesses and

developed ideas for a planning system without these weaknesses. NOAH made some

fundamental assumptions that prevented the application of our solutions, so we

decided to create a new planning system rather than continue to improve upon

NOAH. The new system will advance the state of the art in general planning

systems in the following seven areas:

I. There will be much more domain knowledge in the system, including a
type hierarchy with automatic inheritance of properties.

2. The system will be able to investigate many alternative plans

simultaneously.

3. A more general, flexible, and usable language for describing actions
will be developed.

4. The system will be able to describe its own planning actions in its
language for describing actions, providing the groundwork for a
metaplanning ability in which the system can reason about its own
abilities.

5. The system will know about resources, allowing for their easy
specification and automatic allocation. This allows for a faster and
better analysis of the interactions among parallel branches of a
plan.

6. The system will be able to partially describe variables without
binding them to specific objects. This allows great flexibility in
the description of parallel actions.

7. The system will be able to replan after certain unexpected

occurrences during execution without redoing the whole plan.

2



• !~ /

C, F/ ,

!' c , "

III. DESIGN AND IMPLEMENTATION OF THE NEW SYSTEM

S /

During the past year, the overall design of the new system has been done at a

high level, and a detailed design for some of the areas mentioned in the last

section has been accomplished. The following areas have been designed in

detail:

1. The type hierarchy, including methods for creating and accessing it.

2. The ability to create, store, and access many alternative plans (easy
ways to switch focus from one plan to another still need to be
designed).

3. A general, flexible and easy-to-use language for describing actions.

4. Methods for specifying resources (neither allocating resources nor
finding conflicts on parallel branches has been done yet).

5. Methods for partially describing variables by posting constraints.

During the past year we began to implement the new system in INTERLISP. Most of

the areas mentioned above as being designed in detail have been coded. However,

the code is just bits and pieces; there is, as yet, no system than can plan to

accomplish a goal from start to finish.

IV. FUTURE WORK

In the upcoming year we intend to finish the detailed design of all seven areas

of the new planning system, with the possible exception of the metaplanning

abilities. The ability to allocate resources and solve conflicts among parallel

branches of a plan will be a majcr part of this effort. We intend to complete

the implementation of nearly all the above ideas to produce a planning system

that will offer these capabilities. We intend to test the system in sample

domains and to consider possible military applications.

3



V. PUBLICATIONS AND CONFERENCES

This project supported in part the attendance of David Wilkins and Ann Robinson

at the Canadian Society for Computational Studies of Intelligence Conference at

the University of Victoria, 14-16 May 1980, and at the American Association for

Artificial Intelligence Conference at Stanford University, 19-21 August 1980.

Their paper in the proceedings of the latter conference reports research done on

this project and is included in the Appendix of this report.

4



REPRESENTING KNOWLEDGE IN AN INTERACTIVE PLANNER

Ann E. Robinson and David E. Wilkins

Artificial Intelligence Center

SRI International

Menlo Park, California 94025

ABSTRACT

This note discusses the representation for actions and plans being

developed as part of the current planning research at SRI. Described is

a method for uniformly representing actions that can take place both in

the domain and during planning. The representation accommodates

descriptions of abstract (hypothetical) objects.

I. INTRODUCTION

A principal goal of current planning and plan-execution research at

SRI is development of a planning system that interacts with a person,

allowing that person to: (1) explore alternative plans for performing

some activity, (2) monitor the execution of a plan that has been

produced, and (3) modify the plan as needed during execution.* Described

here is the knowledge representation being developed.

Our research builds directly on previous planning research and on

research in representing the domain knowledge necessary for

participating in natural-language dialogs about tasks. In particular,

some of our representation ideas are based on the process model

formalism described in [2] and [3]. The basic approach to planning is

to work within the hierarchical planning paradigm, representing plans in

procedural networks, as has been done in NOAH [4] and other systems.

The research reported here is supported by Air Force Office of
Scientific research Contract N00014-80-C-0300 and by Office of Naval
Research Contract F49620-79-C-0188.



Unlike its predecessors, our new system is being designed to allow

interaction with users throughout the planning and plan-execution

processes. The user will be able to watch and, when desired, guide

and/or control the planning process. During execution of a plan, some

person or computer system monitoring the execution will be able to

specify what actions have been performed and what changes have occurred

in the world being modeled. On the basis of this, the plan can be

interactively updated to accommodate unanticipated occurrences.

Planning and plan-execution can be intermingled by producing a plan for

part of an activity and then executing some or all of that plan before

working out remaining details.

We are extending planning research in several major directions.

One of the key directions, the one discussed here, is a method for

representing actions that can take place both in the domain and during

planning. Action descriptions (often referred to as operators),

procedural networks, and knowledge about domain objects and their

interrelationships are represented in the same formalism -- a hierarchy

of nodes with attributes. This uniform representation provides the

ability to encode partial descriptions of unspecified objects as well as

objects in the domain model. Thus, operator descriptions referring to

abstract (unbound) objects can be represented in the same formalism as

procedural network nodes referring to specific objects in the domain

model. (Partial descriptions of unspecified objects will be described

here as constraints on the possible values of a variable representilg

the object.)

Objects involved in an action often can be characterized as

resources that are to be used during a particular action and then

released, e.g., a saw used during a cutting action. Since this is a

common phenomenon and since it is often difficult or awkward to keep

track of resources in current planning systems, we have included in the

formalism a means of specifying the objects that are resources for an

action. Declaration of a resource implicitly specifies preconditions on

the availability of the resource, and processes in the planning system

2



automatically satisfy these preconditions as they allocate and

deallocate resources.

Operators can be encoded at several levels of abstraction. Each

one contains information for planning at the next level of detail. We

have already encoded many domain operators for a construction task;

planning operators will be encoded shortly. The domain operators

provide the planning system with information about producing a plan in

the domain. The planning operators provide the planning system with

information so it can reason about its own planning process (meta-

planning). They also provide a major part of the interface between the

planning system and the user, who will be able to direct the planning

process via the planning operators.

The uniformity of representation for domain knowledge, specific

plans of action, and all operators will facilitate both thp user's

ability to interact with and control the planning system, and the

system's ability to incorporate (learn) new operators from plans it has

already produced. We will describe the representation in more detail

below.



II. THE FORMALISM

The formalism for representing knowledge about actions, plans, and

domain objects consists of typed nodes linked in a hierarchy. Each node

can have attributes associated with it. There are four node types for

representing objects: CLASS, INSTANCE, INDEFINITE, and DESCRIPTION.

These will not be discussed in more detail here since they are similar

to those occurring in representation formalisms such as KRL, FRL, and

UNITS [5].

The node types for representing actions can be grouped into four

categories:

OPERATOR, for encoding operators;
PNET, for representing specific actions (nodes

in the procedural network);

PLOT, for describing how to expand a given
OPERATOR, i.e., a description of an action
in greater detail;

PNET.ACTION, for encoding plan steps (procedural
network nodes) that have been 'executed' and
thus represent actions assumed to have
occurred in the world being modeled.

Nodes can have lists of attributes and can be connected into a

hierarchy through CLASS and SUBCLASS links. Attributes of nodes for

representing actions include the resources and arguments of the action

(i.e., the objects that participate in the action), the action's goal,

the action's effects on the domain when it is performed, and the

action's preconditions. OPERATOR nodes have a plot attribute which

specifies PLOT nodes for carrying out the operator.

The PLOT of an operator can be described not only in terms of GOALs

to be achieved, but also in terms of PROCESSes to be invoked. (Previous

systems would represent a PROCESS as a goal with only a single choice

for an action to perform.) The ability to describe operators in terms

of both GOALs and PROCESSes will help simplify encoding of operators and

will allow the planning system to reason about alternative action

sequences more efficiently.

4



OPERATOR:

FIX.MEAL
RESOURCES: meat1, vegI
PLOT :- _%

(PREPARED
meat 1)

RES: meatP PROCESS:

RES: meet 1,

GOAL: vegl
(PREPARED

Vol)
RES: veg I

A PNET node which represents using FIX.MEAL in a plan:

RESOURCES:
fish 1
Vogl

Expansion of this PN ET node at the next level using F I X.M E A L:

GOAL:Fr
(PREPARED

fish1)

RES: fishs PROCESS:
SERVE

S e a RES: fish, a frtGOAL: vegl

(PREPARED

RES: vegl

Figure I

Figure 1 shows a sample operator and a PNET it might produce. The

figure illustrates the uniformity across different types of nodes in our

formalism. The nodes are expressed in the same formalism, and, for the

most part, have the same attributes (e.g., resources, shared-resources,

arguments, preconditions, purpose) with similar values for these

attributes. "Similar values" means that the values refer to the same

types of objects -- often the value of an attribute for some node will

be more constrained than the value of the same attribute in a

5



corresponding node of a different category. The next two paragraphs

illustrate this in detail, after which we describe two instances where

the uniformity of the representation is advantageous.

Attributes in OPERATOR and PLOT nodes generally refer to variables

rather than specific objects, since these are uninstantiated operators

that may be instantiated into PNET nodes in different ways during

planning. For example, in Figure 1 resource variables meatl and vegl in

the operator FIX.MEAL refer to objects of the meat and vegetable class,

respectively. In the expansion of FIX.MEAL, meatl has been constrained

to be a fish (denoted by calling it "fish1") since it was so constrained

in the node being expanded.

In our formalism, such variables are described by INDEFINITE nodes

with constraints on their possible values. For PNET nodes, attributes

frequently refer both to variables (which will often be more constrained

in this case) and to completely specified objects. For PNET.ACTION

nodes, attributes generally refer to specific objects in the domain

model. The system's ability to use INDEFINITE nodes to partially

describe objects is important for representing objects with varying

degrees of abstractness in the same formalism. Few previous planning

systems have used this approach (e.g., NOAH cannot partially describe

objects and has different formalisms for describing operators and

procedural nets). Stefik's system [5] oes allow abstract descriptions

and constraints on partially described arguments, but arguments are

required to be fully instantiated before the constraints can be

evaluated. (See also Hayes-Roth et al. [i].)

The uniformity of representation between PLOT and PNET nodes

permits the description of operators as what amounts to generalized

fragments of procedural network. This turns problem solving into a

process of incremental instantiation. During planning, PNET nodes are

incrementally expanded to a greater level of detail by selecting an

appropriate operator, determining which of its variables match those in

the node being expanded, creating new variable records for those

variables not matched, adding any new constraints to these variables,

6



and following the operator's plot description to create new procedural

network nodes. The uniformity of representation facilitates this

production of PNET nodes from PLOT nodes.

Once a plan has been successfully constructed, it may be desirable

to save it for subsequent planning activities, incorporating it into the

system as a new operator. We expect to develop algorithms for doing

this, i.e., producing an operator (with its associated PLOT nodes) from

PNET fragments. For each control node and each action-oriented node in

a procedural network, a corresponding PLOT node can be easily created

for the operator because of the uniformity of representation. The major

task remaining in producing an operator would be generalizing the

constraints on values for variables in the procedural network nodes into

looser constraints in the new operator.

An additional uniformity between descriptions of specific actions

and operators facilitates the matching of an operator to the node it is

to expand. Thus PROCESS and GOAL nodes in a procedural network or plot

will have attributes similar to those of the OPERATOR node which

represents a more detailed description of their corresponding action.

The similarities of representation of all action-oriented nodes

facilitates interaction with the user who can talk in the same way about

operators, steps in operator plots, and nodes in the procedural network.

Similarly, description of actions is facilitated by this uniformity.

Organizing the representation as nodes with attributes is, of

course, not new and is not essential. The representation could also be

expressed in a formal logic (a translation to logic would be fairly

straightforward). We have chosen to represent things as nodes with

attributes because this blends well with our plans for interaction with

the user.

III. PARTIAL DESCRIPTION USING CONSTRAINTS

Stefik's system [51, one of the few existing planning systems with

the ability to construct partial descriptions of an object without

identifying the object, contains a constraint-posting mechanism that

7



allows partial descriptions similar to those described above. Our

system also provides for partial description using constraints, and

extends Stefik's approach in two ways.

Unlike Stefik's system, our system permits evaluation of

constraints on partially described objects. Both CLASSes and INSTANCEs

can have constraints. For example, a set can be created which can be

constrained to be only bolts, then to be longer than one inch and

shorter than two inches, and then to have hex heads. Our system also

Irovides for partial descriptions that vary with the context, thus

permitting consideration of alternative plans simultaneously. A context

mechanism has been developed to allow for alternative constraints on

variables relative to different plan steps. The constraints on a

variable's value as well as the binding of a variable to a particular

instance (possibly determined during the solution of a general

constraint-satisfaction problem) can only be retrieved relative to a

particular context. This permits the user to easily shift focus back

and forth between alternatives. Hayes-Roth et al. [I] describe the use

of a blackboard model for allowing shifting of focus between

alternatives. Such focus shifting can not Le done in systems using a

backtracking algorithm where descriptions built up during expansion of

one alternative are removed during the backtracking process before

another alternative is investigated. Most other planning systems either

do not allow alternatives (e.g., NOAH[41), or use a backtracking

algorithm (e.g., Stefik [5], Tate [6]).

IV. CONCLUSION

We have described some properties of the knowledge representation

developed for our new planning system. Most of the planner is still

under development (e.g., critics, reasoning about resources, and search

control have yet to be implemented). The central idea discussed here is

the uniform representation of the domain operators, planning operators,

procedural networks, and knowledge about domain objects. Ways to

exploit this uniformity are pointed to. These include a rich

8



interaction with the user, meta-planning, and having the system learn

new operators from plans it has constructed.

REFERENCES

1. Hayes-Roth, B., F. Hayes-Roth, S. Rosenschein, and S. Cammarata,"Modeling Planning as an Incremental, Opportunistic Process" in

Proc. IJCAI-79. Tokyo, Japan, August, 1979. pp. 375-383.

2. Hendrix, C., "Encoding Knowledge in Partitioned Networks." In
Associative Networks-The Representation and Use of Knowledge in
Computers, N.V. Findler, ed., Academic Press, New York, New York,
1979.

3. Robinson, A.E., D. Appelt, B. Grosz, G. Hendrix, and J. Robinson,
"Interpreting Natural-Language Utterances in Dialogs About Tasks".
Technical Note 210, SRI International, Menlo Park, California.
March, 1980.

4. Sacerdoti, E., A Structure for Plans and Behavior. Elsevier North-
Holland, New York, 1977.

5. Stefik, M., Planning With Constraints. Report No. STAN-CS-80-784,
Computer Science Department, Stanford University, Ph.D
Dissertation. 1980.

6. Tate, A., "Generating Project Networks", In Proc. IJCAI 5. Cambridge,
Massachusetts, August, 1977.

9



FIIE

DI


